Can social robots improve children’s mental health? What we know and what we still need to learn

This blog post discusses some of the key findings from the article “Socially Assistive Robots as Mental Health Interventions for Children: A Scoping Review” published in the International Journal of Social Robotics (2020, paper here).


What is a social robot?

Social robots are small robotic devices that are capable of social interactions, such as cooperation, instruction and play. The robots can be shaped like animals (e.g., Aibo – the robotic dog (Fig. 1(a)) or characters (e.g. humanoid robot Nao (Fig. 1(b)). Among other functions, social robots can play a therapeutic role (1), serve as companions (2) and aid in education (3,4). One of the application areas of social robotics is therapy for children with autism spectrum disorder. In this domain, robotic companions have the potential to improve a variety of behavioural outcomes, including social and language skills (5). Social robots are also used with older populations. For example, robots like Paro (Fig. 1(c)) are being used in elder care settings. This baby harp seal lookalike helps reduce loneliness and agitation among residents (6).

Fig. 1 Commonly used social robots Aibo (a)(7), Nao (b)(8), Paro (c)(9).

A new mental health intervention for children

Since social robots seem to have a positive impact on mental health in different populations, there is a growing interest in using them as a tool to promote and improve mental health among children. As a result, a number of studies are being conducted to test social robots in this relatively new domain. In the Neuroscience Engagement and Smart Tech (NEST) Lab, we collected and analyzed the existing research studies which investigate the use of social robots to improve children’s mental health (10), to get a fuller view on what interventions are being tested and how.  

What we know: Feasibility and short-term effects

Using social robots to benefit children’s mental health is a new and rapidly developing field. Hence, the majority of currently available studies are intended as means of exploring what is possible and what could be effective in the future. The studies usually include a single session with the robot, which shows only short-term outcomes of the interaction. While the evidence does not allow for drawing strong and long-term conclusions, the studies in our sample demonstrate that various robotic interventions are feasible. We know that social robots can be introduced and deployed in therapy, clinical and other settings. But perhaps the most crucial aspect of determining whether robotic companions could be successful, is the fact that children participating in the studies usually showed a positive response to the robots and were engaged in the interaction, e.g., distraction during vaccination (11). This positive reception makes the developments in the use of social robots promising.

What we still need to learn: Effectiveness and social impact

To be able to draw conclusions about the effectiveness of robotic interventions we need more evidence. Future research in this field needs to systematically address well-focused questions around specific outcomes (e.g., stress reduction). Additionally, potential social impacts of the robots should be more carefully considered. Robots are intended to be introduced into different environments as social entities. For example, a robot present at a hospital to distract children during medical procedures will likely affect others around the child such as parents and nurses. Moving forward, we need to learn more not only about specific social robot interventions that can be helpful, but also about how introducing social robots into new environments will affect social dynamics.

What about ethics?

Conducting child-robot interaction research comes with unique ethical concerns. In our scoping review of the literature, we found that the majority of studies in the sample provide only generalized statements about the assent process used (10). Transparency about how the robot is introduced and described  to young participants is crucial, as children of different ages may have different beliefs about the animacy of robots. Other notable ethical considerations include attachment and deception. For example, children could experience distress when the robot is taken away or mistreated (12). The key to proactively addressing these ethical issues could be using participatory approaches throughout the research process. Working together with children and parents will help minimize the risk and maximize the benefit of future social robot mental health interventions.

Acknowledgements to the leaders of this work Dr. Julie Robillard and Dr. Tony Prescott.

References:

  1. Howard AM. Robots learn to play: robots emerging role in pediatric therapy. FLAIRS Conference. 2013 May; Available from: https://smartech.gatech.edu/handle/1853/49760.
  2. Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open. 2018 Feb 1;8(2):e018815.
  3. Looije R, Neerincx MA, Peters JK, Henkemans OAB. Integrating Robot Support Functions into Varied Activities at Returning Hospital Visits. Int J of Soc Robotics. 2016 Aug 1;8(4):483–97.
  4. Ros R, Oleari E, Pozzi C, Sacchitelli F, Baranzini D, Bagherzadhalimi A, et al. A Motivational Approach to Support Healthy Habits in Long-term Child–Robot Interaction. Int J of Soc Robotics. 2016 Nov 1;8(5):599–617.
  5. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, et al. Autism and social robotics: A systematic review. Autism Research. 2016;9(2):165–83.
  6. Pu L, Moyle W, Jones C, Todorovic M. The Effectiveness of Social Robots for Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Gerontologist. 2019;59(1):e37–51.
  7. Entertainment Robot “aibo” Announced. Sony Group Portal – Sony Global Headquarters. [cited 2021 Jun 29]. Available from: http://www.sony.com/en/SonyInfo/News/Press/201711/17-105E/index.html
  8. Nao – ROBOTS: Your Guide to the World of Robotics. [cited 2021 Jun 29]. Available from: https://robots.ieee.org/robots/nao//
  9. Purchasing PARO seal. [cited 2021 Jun 29]. Available from: https://www.paroseal.co.uk/purchase
  10. Kabacińska K, Prescott TJ, Robillard JM. Socially Assistive Robots as Mental Health Interventions for Children: A Scoping Review. Int J of Soc Robotics .2020 Jul 27;10.1007/s12369-020-00679-0.
  11. Beran TN, Ramirez-Serrano A, Vanderkooi OG, Kuhn S. Reducing children’s pain and distress towards flu vaccinations: A novel and effective application of humanoid robotics. Vaccine. 2013 Jun 7;31(25):2772–7.
  12. Kahn Jr. PH, Kanda T, Ishiguro H, Freier NG, Severson RL, Gill BT, et al. “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Developmental Psychology. 2012;48(2):303–14.

Dementia Technology Policies: Benefits Are Clear – But What About the Harms?

This blog post discusses some of the key findings from the article “Prioritizing Benefits: A Content Analysis of the Ethics in Dementia Technology Policies” published in the Journal of Alzheimer’s Disease (2019, paper here).


A new era of dementia care

From tracking devices to social robots, technology is rapidly transforming the scope of dementia care. Persons living with dementia and their caregivers can now choose from a wide range of innovative technologies to assist with everyday activities, symptom management, and more. With potential benefits such as increased autonomy and enhanced safety for persons living with dementia (1), new technologies are continuously being developed and entering the market.

Despite the excitement of innovation, the promising benefits of dementia technology must not be the only ethical implication to consider. Although monitoring technologies such as video surveillance can keep older adults safe, this may be at the cost of compromising privacy and independence. While companion robots may show potential in enhancing well-being and connection in older adults (2), this often comes with an expensive price tag. These diverse ethical implications are important for older adults to consider so they adopt technology that best aligns with their needs and values.

The question is, how are these ethical implications communicated to the dementia community through public policies?

The guidance of public policies

Alzheimer associations around the world create public-facing policies to guide the adoption and use of technology in dementia care. Given the wide array of ethical implications in need of consideration, policies play a critical role in raising the ethical issues of care technology to the dementia community. However, we found that the quality and ethical content of these policies can greatly vary, particularly around what ethical implications are being most and least discussed with the public (3).

What we found: Policies prioritize benefits

In the Neuroscience, Engagement, and Smart Tech (NEST) Lab, we analyzed the ethical content of 23 international policies using the four principles of biomedical ethics (4): beneficence, non-maleficence, autonomy, and justice (Fig. 1).

Fig. 1. The four principles of biomedical ethics adapted from Beauchamp and Childress (4).

What we found was that nearly all policies (96%) discussed the benefits of using technology such as increased independence, improved social contact, and enhanced quality of life for the person affected by dementia (3). However, this near-perfect score was not matched by the other ethical principles that raise the potential risks and harms associated with using dementia care technology (Fig. 2)

Fig. 2. Prevalence of policy documents based on the four principles of biomedical ethics.

Themes of justice, for example, were discussed in 74% of the policies, followed by themes of non-maleficence at 52% and autonomy at only 43% (Fig. 2). This lack of comprehensive discussion surrounding the risks and potential harms of dementia care technology is critical for users. Understanding ethical considerations such as cost, privacy, and consent are imperative for people affected by dementia to make well-informed decisions about their care.

Reshaping dementia technology policies

As dementia care technology continues to rapidly develop, so should policies that shape their adoption and use. To maximize the current and future benefits of dementia technologies, policies need to be reworked so that they are in the best interest of the dementia community. Important to this is the inclusion of not just benefits, but the potential risks and harms associated with dementia care technology. Persons with dementia, caregivers, and family members need to be actively engaged in the policy-making process to ensure patient-centred guidance in public policies.

A guide to adopting new technology in dementia care

Based on our findings, we disseminated a public resource to guide the adoption of new technologies in dementia care. Here are 10 questions for older adults to consider when adopting a new technology:

Acknowledgements to Dr. Julie Robillard for her leadership in this project and research members Tanya Feng and Mallorie Tam for their substantial contributions. This work was supported by the Canadian Consortium on Neurodegeneration in Aging and AGE-WELL NCE.

References

  1. Meiland F, Innes A, Mountain G, Robinson L, van der Roest H, García-Casal JA, et al. Technologies to Support Community-Dwelling Persons With Dementia: A Position Paper on Issues Regarding Development, Usability, Effectiveness and Cost-Effectiveness, Deployment, and Ethics. JMIR Rehabil Assist Technol. 2017 Jan 16;4(1):e1.
  2. Pike J, Picking R, Cunningham S. Robot companion cats for people at home with dementia: A qualitative case study on companotics. Dementia. 2021 May 1;20(4):1300–18.
  3. Robillard JM, Wu JM, Feng TL, Tam MT. Prioritizing Benefits: A Content Analysis of the Ethics in Dementia Technology Policies. J Alzheimers Dis. 2019;69(4):897–904.
  4. Beauchamp T, Childress J. Principles of Biomedical Ethics: Marking Its Fortieth Anniversary. Am J Bioeth. 2019 Nov;19(11):9–12.

Julia Wu, BSc is a Research Assistant in the Neuroscience, Engagement and Smart Tech (NEST) Lab at the University of British Columbia and BC Children’s and Women’s Hospital. Her research interests include mental health and innovative approaches to improving patient experience and person-centred care in health care systems.