Centering persons with lived experience in brain health technology research

What is the role of the persons with lived experience in research?

Researchers and research organizations in Canada are changing the way that they think about the role of persons with lived experience in research. There is a shift away from thinking about these groups as passive sources of data and towards meaningful collaboration with them at all stages of research (1). This can involve working collectively to set research priorities, select research designs, and interpret and share research findings. There are large potential benefits, even above and beyond the ethical imperative of “nothing about us without us”. Patient engagement in research can result in work that is better aligned with the actual goals of the population under study as well as improving study enrollment and decreasing participant drop-out (2). There are also potential benefits of the collaborative process for participants themselves. In one study, grandparents who acted as research advisors reported that the experience provided a sense of purpose and a feeling of connection (3). However, prioritizing a collaborative research approach does present unique challenges. It takes time and resources, there are a wide range of methodologies and large differences in how engagement is accomplished between research groups, and there is a potential for “tokenization”, which is the appearance of inclusiveness in the absence of true collaboration.

Incorporating patient engagement practices specifically in the technology research and development space has some unique additional challenges. Emerging technologies may not yet be ready for real-world deployment at the point of care, but engaging persons with lived experience in their early development is critical. It can be difficult to know how to ask participants the best way to study a set of devices that are still under development and part of a quickly-changing commercial landscape! For this reason, pathways to involve persons with lived experience in healthcare technology research are not yet well established.

The need to engage persons with lived experience in social robotics research

One example of a potential health technology that our group would like to study in a patient-centered way is social robotics. These interactive devices are intended to be effective social partners for a person. Their functions can include acting as a fun and entertaining companion, acting as a virtual assistant (e.g., setting up video calls, using the internet to answer questions), providing reminders to take medication, and monitoring the user for events like a fall, among other things. They are being trialled for applications like supporting children’s mental health, as supports for individuals for Autism Spectrum Disorder, and as companions for persons living with dementia (4-8). The COVID-19 pandemic is likely to further accelerate the adoption of social robotics as people seek to reduce live human contact without reducing social connectedness (9).

However, social robotics development priorities are largely driven by the market, engineering constraints, and the recommendations of healthcare experts, rather than by input from persons with lived experience (10). While technically advanced devices are coming to market and manufacturers are making strong claims about the usefulness of these objects, scientific evaluation of these claims is of poor quality and does not focus on the experiences and outcomes that are important to potential users and their families. Not including the voices of potential users can lead to the development of devices that ultimately fail to meet their needs.

Engagement at Neuroethics Canada: Lived Experience Expert Groups

Our research group is currently running a set of projects looking at robotic interventions for anxiety in children and teens. To engage members of these groups directly, we have developed a Lived Experience Expert Group (“LEEG” – we call this group our “League”) to advise on all aspects of our ongoing work on social robotics for children. The group includes a mix of children, teens, and parents/guardians with lived experiences of acute and chronic anxiety and a range of ages and diagnostic groups (e.g., social anxiety, generalized anxiety disorder). Involving young people themselves in patient experience research is critical as their reports on the quality of an interaction can differ from those of adults – even from their parents’ reports of the same event (11, 12). Involving an expert group, rather than a single token lived experience partner, tips the balance of our research team towards individuals with lived experience and away from researchers, as well as promoting a diversity of voices in the work. We are excited to work with the League to refine our research questions, design smart studies, and learn more about the experiences and priorities of young people living with anxiety.

This work is supported by BC Support Unit, the BC Children’s Hospital, and the Michael Smith Foundation for Health Research and is being done under the supervision of Dr. Julie Robillard, with team members Anna Riminchan, Jaya Kailley, Kat Kabacińska, and our generous persons with lived experience partners. 

References

  1. Robillard JK, Jordan I. Dialogue? Yes. Burden? No. Ethical challenges in engaging people with lived experience in health care research. Brainstorm, 32-35.
  2. Domecq JP, Prutsky G, Elraiyah T, Wang Z, Nabhan M, Shippee N, Brito JP, Boehmer K, Hasan R, Firwana B, Erwin P. Patient engagement in research: a systematic review. BMC health services research. 2014 Dec;14(1):1-9.
  3. Sheehan OC, Ritchie CS, Garrett SB, Harrison KL, Mickler A, AL EE, Garrigues SK, Leff B. Unanticipated Therapeutic Value of the Patient-Centered Outcomes Research Institute (PCORI) Stakeholder Engagement Project for Homebound Older Adults. Journal of the American Medical Directors Association. 2020 May 4;21(8):1172-3.
  4. Costescu CA, David DO. Attitudes toward Using Social Robots in Psychotherapy. Transylvanian Journal of Psychology. 2014 Mar 1;15(1).
  5. Dawe J, Sutherland C, Barco A, Broadbent E. Can social robots help children in healthcare contexts? A scoping review. BMJ paediatrics open. 2019;3(1).
  6. Hung L, Liu C, Woldum E, Au-Yeung A, Berndt A, Wallsworth C, Horne N, Gregorio M, Mann J, Chaudhury H. The benefits of and barriers to using a social robot PARO in care settings: a scoping review. BMC geriatrics. 2019 Dec;19(1):1-0.
  7. Kabacińska K, Prescott TJ, Robillard JM. Socially assistive robots as mental health interventions for children: a scoping review. International Journal of Social Robotics. 2021 Aug;13(5):919-35.
  8. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G. Autism and social robotics: A systematic review. Autism Research. 2016 Feb;9(2):165-83.
  9. Ghafurian M, Ellard C, Dautenhahn K. Social companion robots to reduce isolation: A perception change due to COVID-19. In IFIP Conference on Human-Computer Interaction 2021 Aug 30 (pp. 43-63). Springer, Cham.
  10. Riek LD. Robotics technology in mental health care. In Artificial intelligence in behavioral and mental health care 2016 Jan 1 (pp. 185-203). Academic Press.
  11. Hargreaves DS, Sizmur S, Pitchforth J, Tallett A, Toomey SL, Hopwood B, Schuster MA, Viner RM. Children and young people’s versus parents’ responses in an English national inpatient survey. Archives of disease in childhood. 2018 May 1;103(5):486-91.
  12. Kerr C, Nixon A, Angalakuditi M. The impact of epilepsy on children and adult patients’ lives: development of a conceptual model from qualitative literature. Seizure. 2011 Dec 1;20(10):764-74.

Incorporating Patient Voices into Patient Care

Infographic resources for pediatric Drug Resistant Epilepsy


Ask yourself, “would pamphlets or posters be a good means of sharing information for blinded patients?”. Hopefully your response falls somewhere along the spectrum of, “of course not” to “that’s not ideal”. And you’d be right; when creating a resource for a particular group, it’s essential that their needs be considered to ensure the information is shared in a meaningful and functional way. This is true in all domains, be it websites, videos, or printed resources. If the resource is inaccessible to the group you wish to share your research with, then its usefulness is limited to academic discussion and it will not be effective in the real world.

Despite efforts to elucidate guidelines on how to best engage with the public, research shows that many patient education resources aren’t very palatable to the average person. Issues with technical jargon, lack of visual aids, and incomplete information all contribute to the inaccessibility of an educational resource. These issues can be compounded when sharing findings on complex topics such as neurotechnological treatments for pediatric drug resistant epilepsy (DRE). Ultimately, when creating resources from one’s research, the main concern should be that it is readable, understandable, and useful to those who look to access those resources (1).

Figure 1. An Illustration of the communication gap between healthcare research and patients.

Readability

The reading age for a text is measured by its readability, which is a proxy score on how easily it can be read and processed by the reader. Readability commonly assesses the use of familiar words, density of syllables, and length of sentences to determine its score. The American Medical Association (AMA) suggests that all patient resources be written at or below 7th grade reading level, the average American reading level (2). However, studies on resources curated for ophthalmology, lung cancer, and dementia found that nearly all patient education materials produced exceeded these AMA recommendations, leading to materials that were beyond the general populations ability to interpret (3,4,5). In areas where patient’s may be suffering from cognitive deficits, such as epilepsy, clarity in written resources is paramount. Yet patient education websites for epilepsy surgery show no greater care for readability than other fields, with the majority written at an excessively difficult reading level (6). This pattern of low readability suggests that presently available patient resources are not accessible to the common patient, and may be contributing to lower levels of health literacy.

Understandability

While readability is an excellent way to assess whether your audience can read your resource, it doesn’t quite capture whether they can comprehend the information it is sharing. The Patient Education Materials Assessment Tool (PEMAT) developed by the Agency for Healthcare Research Quality measures understandability in terms of content, word choice and style, use of numbers, organization, layout and design, and use of visual aids (7). These metrics are useful for determining how well patients can process a resource’s information and identify the key messages. Applying these measures to current resources reveals how short of the mark they fall in communicating information to patients. In a review of diabetes education materials, only 16% met criteria for understandability (8). Neurosurgery resources were similarly rated with a notable lack of summaries, main messaging, and visual aids (9). This finding is corroborated by another study on epilepsy decision-making, which notes more than half of reviewed patient education materials lacked visual aids entirely (6).  Taken together, it’s clear that much improvement is needed to promote clearer communication of research findings to patients.

Usefulness

The final piece of the patient resource puzzle is ensuring the information a resource is sharing is useful to the reader.Meaning, can they apply they information they learned to benefit their healthcare journey? The idea of usefulness aligns well with the PEMAT measure of actionability: “consumers of diverse backgrounds and varying levels of health literacy can identify what they can do based on the information presented” (7). In practice, patient education resources fall short once again, with only 1 diabetes resource meeting criteria for actionability, and the majority of neurosurgery resources failing to identify next steps or tools to help patients take action (8,9). Usefulness is also limited by inclusion of all relevant information, and in cases where decision-making is needed it is important for patients to be aware of all relevant risks and benefits to make informed healthcare decisions. Yet, nearly half of reviewed resources for epilepsy surgery neglected to touch on risks and benefits, with some providing biased information in one way or the other (e.g. discussing risks or benefits but not both) (6). It is startling to see that the vast majority of carefully crafted patient resources are not proving to be useful to the patients they serve.

A Neuroethical approach to Patient Education Resources

So, how do we make patient resources that are more engaging for patients? An excellent case study in this area are the infographic resources curated alongside research on decision-making for pediatric drug resistant epilepsy.

The large NIH funded project “Informing Choice for Neurotechnological Innovation in Pediatric Epilepsy Surgery” has several arms of research consisting of clinical trials,media analysis, youth interviews, family interviews, caregiver interviews, and genetic testing interviews (10-15). Though the methods for each arm of research varied, the methodology for creating patient-centered infographics stayed consistent.

In neuroethics, the patient’s rights, privacy, and voice are held in high esteem, and the NIH in particular has stated that engagement with the public in research is key. Bidirectional dialogue is encouraged to ensure that patients can engage with the research, and researchers can stay abreast of public desires, concerns, and health literacy (16). This bidirectional dialogue was employed in the development of the infographics, seeking patient and caregiver input at various stages throughout the process to guarantee the patient voice was incorporated and to ensure the resulting infographics were readable, understandable, and useful.

Infographic development process

A value-guided iterative approach was used for the development of all the infographics. The key findings of the research were extracted and summarized, informative headers and take-home messages were drafted. A word document was created with the information in plain text within a table, to resemble the proposed infographic layout, and was then reviewed by caregivers and research collaborators to ensure accuracy and understandability. Once through this initial process, the infographic was prepared, refined by the researchers, and sent to caregivers for review via a short 15-minute survey. The survey gathered information about clarity of main points, conciseness, engagement, visual appeal, and usefulness.

The survey also gauged respondent’s prior knowledge, willingness to share the infographic, and preferred format to engage with the resource. With feedback in hand, the final version of the infographic was designed and uploaded to the study’s page with a QR code included in the design to allow for further feedback and refinement in the future. 

On the sample infographic included to the side you can see the clear title, summary, research design, and action item (highlighted in red).

Readability was ensured through simple language use informed by PEMAT measures and feedback from caregivers. Understandability was ameliorated through the use of clear design, layout, and imagery. Nesting topics underneath key themes to retain a sense of cohesion. Both risks and benefits were addressed to better inform the reader of all relevant information and the take home messages summarize the useful pieces of information the reader can take away to apply in their healthcare journey. 

What’s Next?

Now that we have a framework for how to create and improve patient education materials, future researchers will be able to follow in our footsteps and create patient resources that are accessible. Such accessibility in the form of readability, understandability, and usefulness are highly important, as many North Americans do not possess high levels of health literacy (17,18). Health literacy comprises all the necessary skills to access, process, and comprehend health information in order to make informed healthcare decisions (19). Researchers have amassed a wealth of data on health, healthcare, and treatment options that have the potential to greatly impact the lives of many suffering with health conditions. In order to unlock that potential, patient voices need to be acknowledged and incorporated when creating resources. In this way we can bridge a crucial gap between bench and bedside, creating a more equitable and accessible healthcare system for all.

All 6 infographics summarizing the research of the NIH study on decision-making in paediatric DRE can be viewed and downloaded in English, Spanish or French here.


Ashley Lawson, BScH, is the Knowledge Translation and Communications Specialist for Neuroethics Canada as well as the Canadian Brain Research Strategy. She holds a Bachelor of Science in Psychology with a minor in Biology from Queen’s University.


References:

  1. Beaunoyer E, Arsenault M, Lomanowska AM, Guitton MJ. Understanding online health information: Evaluation, tools, and strategies. Patient education and counseling. 2017 Feb 1;100(2):183-9.
  2. Weiss BD. Health literacy and patient safety: Help patients understand. Manual for clinicians. American Medical Association Foundation; 2007.
  3. Patel PA, Gopali R, Reddy A, Patel KK. The Readability of Ophthalmological Patient Education Materials Provided by Major Academic Hospitals. InSeminars in Ophthalmology 2021 Apr 15 (pp. 1-6). Taylor & Francis.
  4. Hansberry DR, White MD, D’Angelo M, Prabhu AV, Kamel S, Lakhani P, Sundaram B. Lung cancer screening guidelines: how readable are internet-based patient education resources?. American Journal of Roentgenology. 2018 Jul;211(1):W42-6.
  5. O’Callaghan C, Rogan P, Brigo F, Rahilly J, Kinney M. Readability of online sources of information regarding epilepsy surgery and its impact on decision-making processes. Epilepsy & Behavior. 2021 Aug 1;121:108033.
  6. J.M. Robillard, A.B. Sporn (2018). Static versus interactive online resources about dementia: A comparison of readability scores. Gerontechnology, 17(1), 29-37.
  7. Shoemaker SJ, Wolf MS, Brach C. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient education and counseling. 2014 Sep 1;96(3):395-403.
  8. Lipari M, Berlie H, Saleh Y, Hang P, Moser L. Understandability, actionability, and readability of online patient education materials about diabetes mellitus. American Journal of Health-System Pharmacy. 2019 Feb 1;76(3):182-6.
  9. Ramos CL, Williams JE, Bababekov YJ, Chang DC, Carter BS, Jones PS. Assessing the understandability and actionability of online neurosurgical patient education materials. World neurosurgery. 2019 Oct 1;130:e588-97.
  10. Kaal KJ, Aguiar M, Harrison M, McDonald PJ, Illes J. The clinical research landscape of pediatric drug-resistant epilepsy. Journal of child neurology. 2020 Oct;35(11):763-6.
  11. Munjal V, Arakelyan M, McDonald PJ, Illes J. Epilepsy through the eyes of the media: A paradox of positive reporting and challenges of access to advanced neurotechnology. Epilepsy & Behavior. 2020 Oct 1;111:107200.
  12. Udwadia FR, McDonald PJ, Connolly MB, Hrincu V, Illes J. Youth weigh in: views on advanced neurotechnology for drug-resistant epilepsy. Journal of child neurology. 2021 Feb;36(2):128-32.
  13. McDonald PJ, Hrincu V, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Udwadia F, Illes J. Novel neurotechnological interventions for pediatric drug-resistant epilepsy: physician perspectives. Journal of child neurology. 2021 Mar;36(3):222-9
  14. Hrincu V, McDonald PJ, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Alam A, Ribary U, Illes J. Choice and Trade-offs: Parent Decision Making for Neurotechnologies for Pediatric Drug-Resistant Epilepsy. Journal of Child Neurology. 2021 Jun 2:08830738211015010.
  15. Alam, A. Parfvonov, M., Hrincu, V., Lawson, A., Huang, M., Gill, I., Connolly, M., & Illes, J. Genetic testing impacts on decision-making in pediatric drug resistant epilepsy. 2021 (in preparation).
  16. Greely HT, Grady C, Ramos KM, Chiong W, Eberwine J, Farahany NA, Johnson LS, Hyman BT, Hyman SE, Rommelfanger KS, Serrano EE. Neuroethics guiding principles for the NIH BRAIN initiative. Journal of Neuroscience. 2018 Dec 12;38(50):10586-8.
  17. Canadian Council on Learning. Health literacy in Canada: a healthy understanding [internet], Ottawa: Canadian Council on Learning; 2008. Available from: http://www.en.copian.ca/library/research/ccl/health/health.pdf
  18. Davis TC, Williams MV, Marin E, Parker RM, Glass J. Health literacy and cancer communication. CA: a cancer journal for clinicians. 2002 May;52(3):134-49.
  19. Kindig DA, Panzer AM, Nielsen-Bohlman L. Health literacy: a prescription to end confusion. 1st ed. Washington D.C.: National Academies Press; 2004.