Would you join a clinical trial advertised on Facebook? The ethics of dementia research content on social media

Some areas of dementia research are relevant to healthy older adults, and social media can help spread the word. What should researchers and the public know about dementia research content on social media to support future brain health?

Dementia risk reduction is highly relevant for healthy adults. Addressing certain lifestyle factors may reduce future cases of dementia (1). Examples include education, performing physical activity, quitting smoking, preventing head injury, and stabilizing blood pressure.

Online exposure to this topic may encourage lifestyle changes but also promote much-needed dementia research participation for risk reduction. Some dementia researchers are turning to social media as a low-cost way to increase community awareness and research participation (2–5).

Appropriateness of social media in brain health research

Health-related content on social media is not without risk. Ethical concerns accompany the use of social media in research (6,7). Common concerns include privacy, confidentiality, informed consent, the spread of misinformation, and the protection of vulnerable groups. 

Understanding how dementia research is typically presented online can inform social media use to improve public involvement. Currently, however, there is no thorough overview of the type of dementia research content users may encounter on social media. 

To inform future ethical guidance of online brain health engagement, we investigated current uses of social media for dementia research. 

Image by Jason A. Howie under the cc-by-2.0 license on Wikimedia Commons. Creator assumes no responsibility or liability for the content of this site. Original image.

Dementia research on Facebook vs. Twitter

We reviewed a sample of public dementia research posts on Facebook and Twitter (8). Our analysis included understanding the types of users posting about dementia research and the topics discussed. 

Facebook users were mainly advocacy and health organizations rather than individuals. In contrast, Twitter users largely had academic or research backgrounds. This difference in user groups may explain the greater amount of academic content on Twitter, such as peer-reviewed research articles. Most research articles were open access and available to the public but may not be accessible for a wide range of literacy levels.

For both platforms, prevention and risk reduction were main areas of focus in dementia research. Posts with these topics appeared the most frequently and received a lot of attention in the form of likes, shares, and comments.

Other popular topics included dementia treatment and research related to the detection of dementia. Treatment posts primarily discussed the approval of aducanumab1 by the Food and Drug Administration (FDA), leading to much online debate. This may explain why, at the time, non-academic users had more interactions on dementia treatment tweets. The purpose behind most posts was to share dementia research information and knowledge.

On risk, responsibility, and stigma

The posts in our social media data emphasized individual prevention efforts, such as diet and exercise. However, topics also included social and environmental barriers that interfere with dementia risk reduction, care, treatment delivery, and other research areas. 

As stated in one Facebook post, “[the] social determinants of health can significantly impact brain health disparities & the ability to access care.”

Barriers are unequally distributed across communities that vary by race, ethnicity, sex and gender, socioeconomic background, disability, and other aspects of identity.

Dementia researchers on social media should avoid using language that elicits stigma or equates brain health with personal responsibility (9). Society-wide initiatives that overcome barriers can potentially impact future population health on a broader scale positively and more effectively.

Image from Pixabay.

Practical social media guidance is needed for dementia research

A better understanding of the dementia research space on social media can inform future ethical guidelines. Dementia research engagement should incorporate the community’s values and perspectives on using social media for risk reduction.


1 The FDA approved aducanumab as a treatment for Alzheimer’s disease in June 2021. The decision was met with much controversy and ethical discussion. More information can be found here.

Access the full research paper here.

This work is supported by the Alzheimer’s Association Research Grant program (JMR), the Canadian Consortium on Neurodegeneration in Aging, AGE-WELL NCE Inc., a member of the Networks of Centres of Excellence program, and the University of British Columbia Four Year Doctoral Fellowship (VH).

References

  1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020 Aug 8;396(10248):413–46.
  2. Corey KL, McCurry MK, Sethares KA, Bourbonniere M, Hirschman KB, Meghani SH. Utilizing Internet-based recruitment and data collection to access different age groups of former family caregivers. Appl Nurs Res. 2018 Dec 1;44:82–7.
  3. Isaacson RS, Seifan A, Haddox CL, Mureb M, Rahman A, Scheyer O, et al. Using social media to disseminate education about Alzheimer’s prevention & treatment: a pilot study on Alzheimer’s universe (www.AlzU.org). J Commun Healthc. 2018;11(2):106–13.
  4. Friedman DB, Gibson A, Torres W, Irizarry J, Rodriguez J, Tang W, et al. Increasing Community Awareness About Alzheimer’s Disease in Puerto Rico Through Coffee Shop Education and Social Media. J Community Health. 2016 Oct;41(5):1006–12.
  5. Stout SH, Babulal GM, Johnson AM, Williams MM, Roe CM. Recruitment of African American and Non-Hispanic White Older Adults for Alzheimer Disease Research Via Traditional and Social Media: a Case Study. J Cross-Cult Gerontol. 2020 Sep 1;35(3):329–39.
  6. Bender JL, Cyr AB, Arbuckle L, Ferris LE. Ethics and Privacy Implications of Using the Internet and Social Media to Recruit Participants for Health Research: A Privacy-by-Design Framework for Online Recruitment. J Med Internet Res. 2017;19(4):e104.
  7. Gelinas L, Pierce R, Winkler S, Cohen IG, Lynch HF, Bierer BE. Using Social Media as a Research Recruitment Tool: Ethical Issues and Recommendations. Am J Bioeth. 2017 Mar 4;17(3):3–14.
  8. Hrincu V, An Z, Joseph K, Jiang YF, Robillard JM. Dementia Research on Facebook and Twitter: Current Practice and Challenges. J Alzheimers Dis. 2022 Jan 1; 1–13.
  9. Lawless M, Augoustinos M, LeCouteur A. “Your Brain Matters”: Issues of Risk and Responsibility in Online Dementia Prevention Information. Qual Health Res. 2018 Aug 1;28(10):1539–51.

Viorica Hrincu, MSc is doing her PhD in Experimental Medicine at the University of British Columbia in the Neuroscience Engagement and Smart Tech (NEST) lab.

Advertisement

Seizing Hope: High Tech Journeys in Pediatric Epilepsy

Please join us for the world premiere of Seizing Hope: High Tech Journeys in Pediatric Epilepsy!

5:00 PM – 6:15 PM PDT
Wednesday, July 6, 2022
VIFF Centre, 1181 Seymour St., Vancouver, BC V6B 3M7
RSVP to the event here: https://seizinghopefilmvan.eventbrite.ca

Can new technology bring hope to children who have drug-resistant epilepsy?

More than 500,000 children in Canada and the USA have epilepsy. About a third of those children continue to have seizures despite taking anti-seizure medications, also known as pediatric drug resistant epilepsy (DRE). Surgery may be one option for them, but what if there is another option that is less invasive or more effective? What if new technology can bring hope to children who have DRE?

EVENT TIMELINE
4:15PM Doors open
5:00PM Screening starts
5:45PM Panel and Audience Q&A
6:15PM Public event ends

MODERATOR:
Judy Illes, CM, PhD, FRSC, FCAHS

Professor and UBC Distinguished Scholar in Neuroethics
Director, Neuroethics Canada
University of British Columbia

PANELISTS:
Patrick J. McDonald MD, MHSc, FRCSC

Associate Professor and Head, Section of Neurosurgery
Section Head, Neurosurgery, Shared Health Manitoba
Department of Surgery
University of Manitoba

Johann Roduit, PhD
Science Communicator, Producer, and Founding Partner of Conexkt

Please note that seating is general admission and is first-come, first-served. Tickets obtained through registration at Eventbrite do not guarantee guests a seat at the theatre. Theatre is overbooked to ensure a full house.


ABOUT SEIZING HOPE
Families with children suffering from pediatric drug resistant epilepsy (DRE) face complex realities. In a world guided by the promises of technology, the goal of Seizing Hope is to raise awareness about the options offered by different technologies specifically for the brain in complement or as an alternative to treatment with medication. As the directors and producers of this mini-documentary, we want to empower and improve decision-making by exploring values and priorities through the lens of the families and doctors who care for them. We compiled the stories of four families with children who have pediatric DRE to shed light on their hope, trust, and empowerment journey.

The views and research presented in this documentary represent a multi-year neuroethics project funded by the National Institute of Mental Health of the USA National Institutes of Health, BRAIN Initiative.

CREDITS
Neuroethics Canada UBC, with funding from the NIH/NIMH BRAIN Initiative (#RF1MH117805-01) in association with Conexkt Innovation Studio And Cassiar Film CO. present Seizing Hope.
Featuring the Bagg, Chartrand, Thompson, and Cowin families.
Executive Producers Dr. Judy Illes and Dr. Patrick J. McDonald.
Produced by Dr. Johann Roduit. Directed by Adam Wormald.

Learn more at https://www.seizinghopefilm.com/

Brain wellness, genomic justice, and Indigenous communities: Supporting wellness and self-determination

COMMUNITY CONVERSATIONS

Thursday, June 9, 2022
4:00 PM – 5:30 PM PDT
Please register here for the Zoom details: https://ccbwic.eventbrite.ca

Join us for a conversation about supporting Indigenous peoples’ wellness and self-determination in the areas of genomics and brain wellness. Hear perspectives from Krystal Tsosie, co-founder of the first U.S. Indigenous-led biobank, and from members of a working group that convened this past fall to explore the meanings of brain wellness in an Indigenous health context. Our conversation will span topics including research and data sovereignty, intersections between genomic ethics and neuroethics, and uplifting community voices and perspectives. Come ready to learn and consider how our positionalities, lived experiences and cultures can impact the way we think and reason about ethics.

Panelists:
Krystal Tsosie, MPH, MA
Navajo Nation
PhD candidate, Genomics and Health Disparities
Vanderbilt University

Bryce Mercredi
Métis Nation
Elder

Cornelia (Nel) Wieman, MD, MSc, FRCPC
Anishinaabe (Little Grand Rapids First Nation)
Deputy Chief Medical Officer, First Nations Health Authority

Malcolm King, PhD, FCAHS
Mississaugas of the Credit First Nation
Professor, Community Health and Epidemiology
College of Medicine, University of Saskatchewan

Sekani Dakelth
Nak’azdli Nation
Community member and activist

Moderated by:
Louise Harding, BSc

MSc Student, School of Population and Public Health
Neuroethics Canada, University of British Columbia

We are grateful to the UBC W. Maurice Young Centre for Applied Ethics for providing funding for this event.

What’s new in spinal cord repair?

COMMUNITY CONVERSATIONS

Tuesday, June 7, 2022
4:00 PM – 5:30 PM PDT
Please register here for the Zoom details: www.ccmtg.eventbrite.ca

Come join us for an interactive conversation with experts to discuss the latest in different approaches to spinal cord repair!

PANELISTS:
Andrea Townson, MD, FRCPC
Medical Co-Chair, Regional Rehab Program, VCHA
Clinical Professor
Department of Medicine, University of British Columbia

John Madden, PhD, PEng
Director, Advanced Materials and Process Engineering Laboratory
Professor
Department of Electrical & Computer Engineering, University of British Columbia

Karim Fouad, PhD
Co-Director and Editor, Open Data Commons-SCI
Professor and Canada Research Chair for Spinal Cord Injury
Department of Physical Therapy and Neuroscience and Mental Health Institute, University of Alberta

MODERATED BY:
Judy Illes, CM, PhD
Director, Neuroethics Canada
Professor and Distinguished University Scholar, UBC Distinguished Professor in Neuroethics
Department of Medicine, University of British Columbia

Worlds Apart – Ensuring Equitable Access to Advances in Brain Health

Join us for the 2022 Brain Awareness Week Annual Neuroethics Distinguished Lecture featuring Dr. Patrick McDonald!
 

Tuesday, March 15, 2022
4:00 PM – 5:30 PM PDT
For the Zoom details, kindly RSVP here: https://ncbaw2022.eventbrite.ca

Overview
Rapid technological advancements have led to the potential for significant improvements in brain health, expanding both the range of conditions treated and number of patients who can be helped. While these advancements hold great promise, they also come with considerable cost and a risk that they are not offered to all who may benefit from them, especially those in vulnerable populations. Advances in treating children with epilepsy and adults with movement disorders make equitable access to all ever more critical.

Patrick McDonald MD, MHSc, FRCSC
Dr. Patrick McDonald is a pediatric neurosurgeon at Winnipeg Children’s Hospital, Head of the Section of Neurosurgery at the University of Manitoba and a Faculty Member at Neuroethics Canada in Vancouver, BC. He is Chair of the Ethics Committee of the Royal College of Physicians and Surgeons of Canada and Past President of the Canadian Neurosurgical Society. For twenty years he has combined a practice caring for children with neurologic illness with an interest in the ethical issues that surround that care. Collaborating with Professor Judy Illes, Director of Neuroethics Canada, he studies the neuroethical issues inherent in the adoption of novel neurotechnologies to treat brain illness.

Brain Awareness Week
Brain Awareness Week is the global campaign to foster public enthusiasm and support for brain science. Every March, partners host imaginative activities in their communities that share the wonders of the brain and the impact brain science has on our everyday lives.

Neuroethical challenges of screening for brain injury in women who have experienced intimate partner violence

One in three women will experience intimate partner violence (IPV) in their lifetime. Up to 92% of these women will also suffer a brain injury (BI) at the hands of a partner (1,2). To put this in a Canadian perspective, for every 1 NHL player that suffers a concussion, 5,500 Canadian women suffer the same injury due to IPV. It is with these statistics in mind that research teams such as the SOAR project (Supporting Survivors of Abuse and Brain Injury through Research) have been assembled to better understand, characterize, and manage the urgent crisis that is intimate partner violence-related brain injury (IPV-BI).

A major pillar of scientific and clinical interest in IPV-BI research is designing and implementing BI screening tools specific to IPV. Although research teams approach this topic with the intent of better understanding IPV-BI, improving BI diagnostic science, and designing intervention strategies tailored to IPV-BI, careful consideration must be taken to ensure that providing BI screening information will not harm patients in other areas of their lives. To justify any health screening, two criterion must be met: 1) the presence of sufficient risk of a positive result (in other words, the likelihood of a positive result must be deemed significant); and 2) the availability of an evidence-based validated treatment or intervention in the event of a positive result (3–5). Despite these concerns, when limiting perspective to a healthcare silo, the benefits of screening for IPV-BI seem to outweigh the concerns. However, the impacts of screening for IPV-BI outside of the healthcare context must also be considered. Through applying an intersectional lens, which considers the intersection of social categories such as race, gender, class, and other characteristics of marginalization, we recognize the wide-ranging experiences of survivors of IPV and acknowledge we have a responsibility to ensure BI information in other contexts does no harm. Specific to women who have experienced IPV-BI, the legal implications of BI screening information are of particular concern. 

My master’s thesis examined the ethico-legal considerations of screening for BI in women who have experienced IPV. The concerns surrounding screening for IPV-BI arise from a history of mental health information, such as depression, anxiety, or post-traumatic stress disorder (PTSD) being weaponized against women in family law proceedings. Not only does this imply BI will be similarly weaponized, but that disorders often diagnosed alongside BI – depression, anxiety, and PTSD – will almost certainly be used in an attempt to prove a woman is unfit to parent. To examine this issue, lawyers were interviewed to elicit their knowledge of IPV, BI, and IPV-BI, as well as the role each may play in Canadian family courts.

Lawyers provided significant insight into how IPV-BI may impact the outcome of parenting disputes in Canadian family law. The major findings can be separated into three themes: (1) education; (2) capacity; (3) causation. 

(1) Education

It was clear through the interviews that there is a limited understanding of both IPV and IPV-BI by the legal profession. Despite all participants reporting they have had cases which involved IPV, most reported no formal education on IPV and its complexities or how it should factor into parenting disputes. It is therefore unsurprising that IPV is often dismissed within family law as irrelevant, and foreshadows lawyers being similarly ill-equipped to support clients who have sustained IPV-BI.

(2) Capacity

Capacity, here, refers to either a woman’s ability to give and receive legal instructions because of any deficits caused by the BI, or more importantly, the woman’s capacity to parent. Every participant stated that they would expect the opposing lawyer to use IPV-BI as a means to challenge a woman’s ability to parent. Interestingly, participants also said they would do the exact same thing if they were representing the alleged abuser, despite acknowledging how absurd that may sound. This mirrors the historical instances in family law where stigmatized health disorders such as depression were used to minimize a woman’s parenting capacity.

(3) Causation

Lastly, lawyers emphasized that it would be difficult to prove that IPV caused the BI if there was no physical evidence. Unfortunately, this is often difficult for women and lawyers to provide in situations involving IPV. In the absence of physical evidence showing IPV or IPV-BI, this becomes a situation of hearsay. In these cases, women are either not believed, their experiences of violence are minimized, or the courts acknowledge that the IPV exists but dismiss it as marital conflict and deem it irrelevant to the parenting dispute. Courts may also rely on a physician’s testimony to discuss the implications of BI on tasks relevant to parenting (such as memory). However, not all physicians are well informed on the complexities of IPV-BI. It is therefore difficult for women and their lawyers to find suitable experts who can speak to both IPV and BI appropriately without causing undue harm to women through the testimony of BI and its effects.

Should we continue to screen?

Ultimately, these themes show that IPV-BI does leave women legally vulnerable due to a lack of legal precedent (it has never been seen before), inadequate education surrounding IPV and IPV-BI for legal professionals, and the difficulty in proving causation. It is important to emphasize that the BI is not the problem. Rather, it is inserting it into a legal system that is ill-equipped to appropriately address IPV-BI and which continues to suffer from the influences of sexism and racism. Although I have highlighted issues with screening for IPV-BI, I am not advocating for the cessation of this important practice; however, screening should implement the following recommendations to ensure equitable and ethical care:

  1. Expert allyship: Organizations such as SOAR should have physicians in their team who are well versed in IPV-BI and eager to advocate for women in court. 
  2. Trauma-informed legal team: Connecting women to trauma-informed legal professionals ensures women feel supported and both women and their counsel are well-prepared to address IPV and IPV-BI in parenting disputes.
  3. Assessment of parenting capacity: Incorporate an assessment of the patient’s capacity to parent into the screening tool. This may help counteract any allegations immediately, avoiding additional assessments and mitigating the impact these claims may have on the outcome.
  4. Transparent informed consent: It is important that patients know that this information will likely be submitted in a parenting dispute by their spouse’s counsel. Informed consent will ensure patients can adequately prepare with their legal team. 

Without implementation of these recommendations, IPV-BI has the potential to become another avenue for the perpetuation of violence post-separation – a common occurrence in outcomes of parenting disputes in Canada. These recommendations call for scientists and clinicians alike to broaden their conception of ethics and contextualize their research within the reality of their participants’ and patients’ lives.  

Although current statistics show heterosexual women experience the most severe physical IPV conducive to causing BI, it is important to note that IPV in all of its forms (physical, psychological, sexual, financial, coercive control) and IPV-BI is not exclusive to heterosexual relationships or to people identifying as women. Future research surrounding IPV-BI, IPV-BI screening, and their intersection with law should be expanded to explore the phenomenon with other relationships and identities along the sexuality and gender spectrums.

References

  1. World Health Organization, Department of Reproductive Health and Research, London School of Hygiene and Tropical Medicine, South African Medical Research Council. Global and regional estimates of violence against women. WHO. World Health Organization; 2014. 
  2. Valera EM, Berenbaum H. Brain injury in battered women. J Consult Clin Psychol. 2003;71(4):797–804. 
  3. Arora N, Hjalmarsson C, Lang E, Boyle A, Atkinson P. We should routinely screen for domestic violence (intimate partner violence) in the emergency department. Can J Emerg Med. 2019;21(6):701–5. 
  4. McLaughlin KD. Ethical considerations for clinicians treating victims and perpetrators of intimate partner violence. Ethics Behav [Internet]. 2017;27(1):43–52. Available from: http://dx.doi.org/10.1080/10508422.2016.1185012
  5. Palmer VJ, Yelland JS, Taft AJ. Ethical complexities of screening for depression and intimate partner violence (IPV) in intervention studies. BMC Public Health. 2011;11(5). 

Acknowledgements to Dr. Paul van Donkelaar, Dr. Judy Illes, Dr. Deana Simonetto, and the entire SOAR team for their leadership, support, and contributions to this work.

Centering persons with lived experience in brain health technology research

What is the role of the persons with lived experience in research?

Researchers and research organizations in Canada are changing the way that they think about the role of persons with lived experience in research. There is a shift away from thinking about these groups as passive sources of data and towards meaningful collaboration with them at all stages of research (1). This can involve working collectively to set research priorities, select research designs, and interpret and share research findings. There are large potential benefits, even above and beyond the ethical imperative of “nothing about us without us”. Patient engagement in research can result in work that is better aligned with the actual goals of the population under study as well as improving study enrollment and decreasing participant drop-out (2). There are also potential benefits of the collaborative process for participants themselves. In one study, grandparents who acted as research advisors reported that the experience provided a sense of purpose and a feeling of connection (3). However, prioritizing a collaborative research approach does present unique challenges. It takes time and resources, there are a wide range of methodologies and large differences in how engagement is accomplished between research groups, and there is a potential for “tokenization”, which is the appearance of inclusiveness in the absence of true collaboration.

Incorporating patient engagement practices specifically in the technology research and development space has some unique additional challenges. Emerging technologies may not yet be ready for real-world deployment at the point of care, but engaging persons with lived experience in their early development is critical. It can be difficult to know how to ask participants the best way to study a set of devices that are still under development and part of a quickly-changing commercial landscape! For this reason, pathways to involve persons with lived experience in healthcare technology research are not yet well established.

The need to engage persons with lived experience in social robotics research

One example of a potential health technology that our group would like to study in a patient-centered way is social robotics. These interactive devices are intended to be effective social partners for a person. Their functions can include acting as a fun and entertaining companion, acting as a virtual assistant (e.g., setting up video calls, using the internet to answer questions), providing reminders to take medication, and monitoring the user for events like a fall, among other things. They are being trialled for applications like supporting children’s mental health, as supports for individuals for Autism Spectrum Disorder, and as companions for persons living with dementia (4-8). The COVID-19 pandemic is likely to further accelerate the adoption of social robotics as people seek to reduce live human contact without reducing social connectedness (9).

However, social robotics development priorities are largely driven by the market, engineering constraints, and the recommendations of healthcare experts, rather than by input from persons with lived experience (10). While technically advanced devices are coming to market and manufacturers are making strong claims about the usefulness of these objects, scientific evaluation of these claims is of poor quality and does not focus on the experiences and outcomes that are important to potential users and their families. Not including the voices of potential users can lead to the development of devices that ultimately fail to meet their needs.

Engagement at Neuroethics Canada: Lived Experience Expert Groups

Our research group is currently running a set of projects looking at robotic interventions for anxiety in children and teens. To engage members of these groups directly, we have developed a Lived Experience Expert Group (“LEEG” – we call this group our “League”) to advise on all aspects of our ongoing work on social robotics for children. The group includes a mix of children, teens, and parents/guardians with lived experiences of acute and chronic anxiety and a range of ages and diagnostic groups (e.g., social anxiety, generalized anxiety disorder). Involving young people themselves in patient experience research is critical as their reports on the quality of an interaction can differ from those of adults – even from their parents’ reports of the same event (11, 12). Involving an expert group, rather than a single token lived experience partner, tips the balance of our research team towards individuals with lived experience and away from researchers, as well as promoting a diversity of voices in the work. We are excited to work with the League to refine our research questions, design smart studies, and learn more about the experiences and priorities of young people living with anxiety.

This work is supported by BC Support Unit, the BC Children’s Hospital, and the Michael Smith Foundation for Health Research and is being done under the supervision of Dr. Julie Robillard, with team members Anna Riminchan, Jaya Kailley, Kat Kabacińska, and our generous persons with lived experience partners. 

References

  1. Robillard JK, Jordan I. Dialogue? Yes. Burden? No. Ethical challenges in engaging people with lived experience in health care research. Brainstorm, 32-35.
  2. Domecq JP, Prutsky G, Elraiyah T, Wang Z, Nabhan M, Shippee N, Brito JP, Boehmer K, Hasan R, Firwana B, Erwin P. Patient engagement in research: a systematic review. BMC health services research. 2014 Dec;14(1):1-9.
  3. Sheehan OC, Ritchie CS, Garrett SB, Harrison KL, Mickler A, AL EE, Garrigues SK, Leff B. Unanticipated Therapeutic Value of the Patient-Centered Outcomes Research Institute (PCORI) Stakeholder Engagement Project for Homebound Older Adults. Journal of the American Medical Directors Association. 2020 May 4;21(8):1172-3.
  4. Costescu CA, David DO. Attitudes toward Using Social Robots in Psychotherapy. Transylvanian Journal of Psychology. 2014 Mar 1;15(1).
  5. Dawe J, Sutherland C, Barco A, Broadbent E. Can social robots help children in healthcare contexts? A scoping review. BMJ paediatrics open. 2019;3(1).
  6. Hung L, Liu C, Woldum E, Au-Yeung A, Berndt A, Wallsworth C, Horne N, Gregorio M, Mann J, Chaudhury H. The benefits of and barriers to using a social robot PARO in care settings: a scoping review. BMC geriatrics. 2019 Dec;19(1):1-0.
  7. Kabacińska K, Prescott TJ, Robillard JM. Socially assistive robots as mental health interventions for children: a scoping review. International Journal of Social Robotics. 2021 Aug;13(5):919-35.
  8. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G. Autism and social robotics: A systematic review. Autism Research. 2016 Feb;9(2):165-83.
  9. Ghafurian M, Ellard C, Dautenhahn K. Social companion robots to reduce isolation: A perception change due to COVID-19. In IFIP Conference on Human-Computer Interaction 2021 Aug 30 (pp. 43-63). Springer, Cham.
  10. Riek LD. Robotics technology in mental health care. In Artificial intelligence in behavioral and mental health care 2016 Jan 1 (pp. 185-203). Academic Press.
  11. Hargreaves DS, Sizmur S, Pitchforth J, Tallett A, Toomey SL, Hopwood B, Schuster MA, Viner RM. Children and young people’s versus parents’ responses in an English national inpatient survey. Archives of disease in childhood. 2018 May 1;103(5):486-91.
  12. Kerr C, Nixon A, Angalakuditi M. The impact of epilepsy on children and adult patients’ lives: development of a conceptual model from qualitative literature. Seizure. 2011 Dec 1;20(10):764-74.

Neuroethics Canada goes green: A year-in-review of medical cannabis research

In collaboration with Canadian Childhood Cannabinoid Clinical TrialsNeuroethics Canada conducted a series of research projects to investigate ethical, legal and social issues surrounding medical cannabis. We studied news media representations of medical cannabis, conducted interviews with clinicians, and held virtual workshops to garner a greater understanding of the perspectives of key stakeholders, and to make recommendations for future medical cannabis research, regulation and use.

Ethical issues at the forefront of news reporting on medical cannabis: Capturing the focus of multiple formats of news media coverage on medical cannabis is essential to understanding how public opinions and public policy are shaped. We studied traditional and alternative news media messaging surrounding medical cannabis and health. Analysis revealed that key ethical, legal and social (ELS) issues were the main focus of both traditional and alternative news articles. Alternative news articles covered ELS issues more in fewer articles, and reported on fewer themes per article. Overall, access was found to be the dominate ELS issue. Multiple factors impacting patient access, such as institutional regulations and supply of products, were reported on in both traditional and alternative sources (Figure 1). In traditional news coverage, institutional gatekeeping of patient access declined significantly post-legalization of adult possession and use of medical cannabis; by comparison, there was no change in alternative news pre- and post-legalization with regard to gatekeeping, although coverage of the access factor of product supply increased post-legalization (Cannabis Act, 17 October 2018). There was limited coverage of issues specific to exceptional populations, including children with neurological and medical disorders and Indigenous peoples. See Gunning and Illes, Coverage of medical cannabis by Canadian news media: Ethics, access and policy, International Journal of Drug Policy, 97, 103361 (2021); and response to publication, International Journal of Drug Policy, under review.

Figure 1: Major access factors by percentage of coverage of the ELS subtheme of access. Minor access factors accounting for less than 5% of total coded references are not shown.

Harm reduction approach for medical cannabis in the care of youth and children: The use of cannabis for medical purposes by youth and children is expanding. However, supporting evidence and federal and local regulations are lacking. Understanding clinician perspectives of this landscape is key for addressing access barriers, and for supporting safe, appropriate use. We interviewed Canadian clinicians practicing in areas related to paediatric medicine including neurology, oncology and palliative care. Clinicians discussed barriers to patient access, chiefly obstacles in the authorization process such as considerations around supply, quality and cost of products. The need for facilitating open, honest clinical communication between patients, caregivers and clinicians was described as essential for ensuring informed consent. As with all other treatment decisions, clinicians described considerations that could mitigate risks, such as life-limiting prognosis and number of tried and failed conventional therapeutic options. Further, they expressed that more methodologically-sound research is essential for expanding medical applications of cannabis. Overall, the discourse aligned with the principles of harm reduction: pragmatism, humanism, harms, and prioritization of immediate goals (Figure 2). Gunning et al., Canadian Medical Association Journal, under review.

Figure 2: Harm reduction approaches employed by clinicians to ensure ethical, safe use of medical cannabis for children and youth.

Building trust in the tense world of medical cannabis: We convened a two-day virtual workshop to discuss ethics and medical cannabis for children and youth in healthcare. Three main topics were covered in each session: (1) the current scientific and regulatory landscape of medical cannabis; (2) surrogate decision-making and assent; and (3) social and political culture of medical cannabis. In attendance were members of the public, ethicists, clinicians, researchers, policy makers, patient representatives, and industry representatives. Despite having a medical cannabis access program in Canada for two decades, participants expressed disappointment that there is still a large amount of uncertainty around medical cannabis due to a lack of data and poor data translation. Also highlighted by participants was the importance of clinicians building trust with patients by demonstrating their trustworthiness in clinical consultation. Respecting patient informed choice, assent and dissent, and understanding and addressing the root cause of clinician hesitancy to authorize were described as ways clinicians can facilitate trust with patients and their caregivers. Participants discussed historical and ongoing stigmatization of medical cannabis and medical cannabis users, particularly of people who are already marginalized within the healthcare system. There were calls for more strength-based research with Indigenous youths’ and communities’ to understand their perspectives on medical cannabis and health. Gunning et al., in preparation.

Our work, including media analyses, interviews, and workshops, highlighted three key areas that will be critical to addressing ongoing issues in the study, regulation, authorization and use of medical cannabis: (1) continued examination of ethics issues surrounding medical cannabis; (2) acquisition of evidence using innovative, adaptive study designs and diverse knowledge systems; and (3) public consultation and engagement with key stakeholders.

Acknowledgments to Dr. Judy Illes, research members Ari Rotenberg and Alissa Wong, project collaborators at Canadian Childhood Cannabinoid Clinical Trials, and members of Neuroethics Canada for their leadership, contributions and continued support.

Incorporating Patient Voices into Patient Care

Infographic resources for pediatric Drug Resistant Epilepsy


Ask yourself, “would pamphlets or posters be a good means of sharing information for blinded patients?”. Hopefully your response falls somewhere along the spectrum of, “of course not” to “that’s not ideal”. And you’d be right; when creating a resource for a particular group, it’s essential that their needs be considered to ensure the information is shared in a meaningful and functional way. This is true in all domains, be it websites, videos, or printed resources. If the resource is inaccessible to the group you wish to share your research with, then its usefulness is limited to academic discussion and it will not be effective in the real world.

Despite efforts to elucidate guidelines on how to best engage with the public, research shows that many patient education resources aren’t very palatable to the average person. Issues with technical jargon, lack of visual aids, and incomplete information all contribute to the inaccessibility of an educational resource. These issues can be compounded when sharing findings on complex topics such as neurotechnological treatments for pediatric drug resistant epilepsy (DRE). Ultimately, when creating resources from one’s research, the main concern should be that it is readable, understandable, and useful to those who look to access those resources (1).

Figure 1. An Illustration of the communication gap between healthcare research and patients.

Readability

The reading age for a text is measured by its readability, which is a proxy score on how easily it can be read and processed by the reader. Readability commonly assesses the use of familiar words, density of syllables, and length of sentences to determine its score. The American Medical Association (AMA) suggests that all patient resources be written at or below 7th grade reading level, the average American reading level (2). However, studies on resources curated for ophthalmology, lung cancer, and dementia found that nearly all patient education materials produced exceeded these AMA recommendations, leading to materials that were beyond the general populations ability to interpret (3,4,5). In areas where patient’s may be suffering from cognitive deficits, such as epilepsy, clarity in written resources is paramount. Yet patient education websites for epilepsy surgery show no greater care for readability than other fields, with the majority written at an excessively difficult reading level (6). This pattern of low readability suggests that presently available patient resources are not accessible to the common patient, and may be contributing to lower levels of health literacy.

Understandability

While readability is an excellent way to assess whether your audience can read your resource, it doesn’t quite capture whether they can comprehend the information it is sharing. The Patient Education Materials Assessment Tool (PEMAT) developed by the Agency for Healthcare Research Quality measures understandability in terms of content, word choice and style, use of numbers, organization, layout and design, and use of visual aids (7). These metrics are useful for determining how well patients can process a resource’s information and identify the key messages. Applying these measures to current resources reveals how short of the mark they fall in communicating information to patients. In a review of diabetes education materials, only 16% met criteria for understandability (8). Neurosurgery resources were similarly rated with a notable lack of summaries, main messaging, and visual aids (9). This finding is corroborated by another study on epilepsy decision-making, which notes more than half of reviewed patient education materials lacked visual aids entirely (6).  Taken together, it’s clear that much improvement is needed to promote clearer communication of research findings to patients.

Usefulness

The final piece of the patient resource puzzle is ensuring the information a resource is sharing is useful to the reader.Meaning, can they apply they information they learned to benefit their healthcare journey? The idea of usefulness aligns well with the PEMAT measure of actionability: “consumers of diverse backgrounds and varying levels of health literacy can identify what they can do based on the information presented” (7). In practice, patient education resources fall short once again, with only 1 diabetes resource meeting criteria for actionability, and the majority of neurosurgery resources failing to identify next steps or tools to help patients take action (8,9). Usefulness is also limited by inclusion of all relevant information, and in cases where decision-making is needed it is important for patients to be aware of all relevant risks and benefits to make informed healthcare decisions. Yet, nearly half of reviewed resources for epilepsy surgery neglected to touch on risks and benefits, with some providing biased information in one way or the other (e.g. discussing risks or benefits but not both) (6). It is startling to see that the vast majority of carefully crafted patient resources are not proving to be useful to the patients they serve.

A Neuroethical approach to Patient Education Resources

So, how do we make patient resources that are more engaging for patients? An excellent case study in this area are the infographic resources curated alongside research on decision-making for pediatric drug resistant epilepsy.

The large NIH funded project “Informing Choice for Neurotechnological Innovation in Pediatric Epilepsy Surgery” has several arms of research consisting of clinical trials,media analysis, youth interviews, family interviews, caregiver interviews, and genetic testing interviews (10-15). Though the methods for each arm of research varied, the methodology for creating patient-centered infographics stayed consistent.

In neuroethics, the patient’s rights, privacy, and voice are held in high esteem, and the NIH in particular has stated that engagement with the public in research is key. Bidirectional dialogue is encouraged to ensure that patients can engage with the research, and researchers can stay abreast of public desires, concerns, and health literacy (16). This bidirectional dialogue was employed in the development of the infographics, seeking patient and caregiver input at various stages throughout the process to guarantee the patient voice was incorporated and to ensure the resulting infographics were readable, understandable, and useful.

Infographic development process

A value-guided iterative approach was used for the development of all the infographics. The key findings of the research were extracted and summarized, informative headers and take-home messages were drafted. A word document was created with the information in plain text within a table, to resemble the proposed infographic layout, and was then reviewed by caregivers and research collaborators to ensure accuracy and understandability. Once through this initial process, the infographic was prepared, refined by the researchers, and sent to caregivers for review via a short 15-minute survey. The survey gathered information about clarity of main points, conciseness, engagement, visual appeal, and usefulness.

The survey also gauged respondent’s prior knowledge, willingness to share the infographic, and preferred format to engage with the resource. With feedback in hand, the final version of the infographic was designed and uploaded to the study’s page with a QR code included in the design to allow for further feedback and refinement in the future. 

On the sample infographic included to the side you can see the clear title, summary, research design, and action item (highlighted in red).

Readability was ensured through simple language use informed by PEMAT measures and feedback from caregivers. Understandability was ameliorated through the use of clear design, layout, and imagery. Nesting topics underneath key themes to retain a sense of cohesion. Both risks and benefits were addressed to better inform the reader of all relevant information and the take home messages summarize the useful pieces of information the reader can take away to apply in their healthcare journey. 

What’s Next?

Now that we have a framework for how to create and improve patient education materials, future researchers will be able to follow in our footsteps and create patient resources that are accessible. Such accessibility in the form of readability, understandability, and usefulness are highly important, as many North Americans do not possess high levels of health literacy (17,18). Health literacy comprises all the necessary skills to access, process, and comprehend health information in order to make informed healthcare decisions (19). Researchers have amassed a wealth of data on health, healthcare, and treatment options that have the potential to greatly impact the lives of many suffering with health conditions. In order to unlock that potential, patient voices need to be acknowledged and incorporated when creating resources. In this way we can bridge a crucial gap between bench and bedside, creating a more equitable and accessible healthcare system for all.

All 6 infographics summarizing the research of the NIH study on decision-making in paediatric DRE can be viewed and downloaded in English, Spanish or French here.


Ashley Lawson, BScH, is the Knowledge Translation and Communications Specialist for Neuroethics Canada as well as the Canadian Brain Research Strategy. She holds a Bachelor of Science in Psychology with a minor in Biology from Queen’s University.


References:

  1. Beaunoyer E, Arsenault M, Lomanowska AM, Guitton MJ. Understanding online health information: Evaluation, tools, and strategies. Patient education and counseling. 2017 Feb 1;100(2):183-9.
  2. Weiss BD. Health literacy and patient safety: Help patients understand. Manual for clinicians. American Medical Association Foundation; 2007.
  3. Patel PA, Gopali R, Reddy A, Patel KK. The Readability of Ophthalmological Patient Education Materials Provided by Major Academic Hospitals. InSeminars in Ophthalmology 2021 Apr 15 (pp. 1-6). Taylor & Francis.
  4. Hansberry DR, White MD, D’Angelo M, Prabhu AV, Kamel S, Lakhani P, Sundaram B. Lung cancer screening guidelines: how readable are internet-based patient education resources?. American Journal of Roentgenology. 2018 Jul;211(1):W42-6.
  5. O’Callaghan C, Rogan P, Brigo F, Rahilly J, Kinney M. Readability of online sources of information regarding epilepsy surgery and its impact on decision-making processes. Epilepsy & Behavior. 2021 Aug 1;121:108033.
  6. J.M. Robillard, A.B. Sporn (2018). Static versus interactive online resources about dementia: A comparison of readability scores. Gerontechnology, 17(1), 29-37.
  7. Shoemaker SJ, Wolf MS, Brach C. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient education and counseling. 2014 Sep 1;96(3):395-403.
  8. Lipari M, Berlie H, Saleh Y, Hang P, Moser L. Understandability, actionability, and readability of online patient education materials about diabetes mellitus. American Journal of Health-System Pharmacy. 2019 Feb 1;76(3):182-6.
  9. Ramos CL, Williams JE, Bababekov YJ, Chang DC, Carter BS, Jones PS. Assessing the understandability and actionability of online neurosurgical patient education materials. World neurosurgery. 2019 Oct 1;130:e588-97.
  10. Kaal KJ, Aguiar M, Harrison M, McDonald PJ, Illes J. The clinical research landscape of pediatric drug-resistant epilepsy. Journal of child neurology. 2020 Oct;35(11):763-6.
  11. Munjal V, Arakelyan M, McDonald PJ, Illes J. Epilepsy through the eyes of the media: A paradox of positive reporting and challenges of access to advanced neurotechnology. Epilepsy & Behavior. 2020 Oct 1;111:107200.
  12. Udwadia FR, McDonald PJ, Connolly MB, Hrincu V, Illes J. Youth weigh in: views on advanced neurotechnology for drug-resistant epilepsy. Journal of child neurology. 2021 Feb;36(2):128-32.
  13. McDonald PJ, Hrincu V, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Udwadia F, Illes J. Novel neurotechnological interventions for pediatric drug-resistant epilepsy: physician perspectives. Journal of child neurology. 2021 Mar;36(3):222-9
  14. Hrincu V, McDonald PJ, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Alam A, Ribary U, Illes J. Choice and Trade-offs: Parent Decision Making for Neurotechnologies for Pediatric Drug-Resistant Epilepsy. Journal of Child Neurology. 2021 Jun 2:08830738211015010.
  15. Alam, A. Parfvonov, M., Hrincu, V., Lawson, A., Huang, M., Gill, I., Connolly, M., & Illes, J. Genetic testing impacts on decision-making in pediatric drug resistant epilepsy. 2021 (in preparation).
  16. Greely HT, Grady C, Ramos KM, Chiong W, Eberwine J, Farahany NA, Johnson LS, Hyman BT, Hyman SE, Rommelfanger KS, Serrano EE. Neuroethics guiding principles for the NIH BRAIN initiative. Journal of Neuroscience. 2018 Dec 12;38(50):10586-8.
  17. Canadian Council on Learning. Health literacy in Canada: a healthy understanding [internet], Ottawa: Canadian Council on Learning; 2008. Available from: http://www.en.copian.ca/library/research/ccl/health/health.pdf
  18. Davis TC, Williams MV, Marin E, Parker RM, Glass J. Health literacy and cancer communication. CA: a cancer journal for clinicians. 2002 May;52(3):134-49.
  19. Kindig DA, Panzer AM, Nielsen-Bohlman L. Health literacy: a prescription to end confusion. 1st ed. Washington D.C.: National Academies Press; 2004.


Can social robots improve children’s mental health? What we know and what we still need to learn

This blog post discusses some of the key findings from the article “Socially Assistive Robots as Mental Health Interventions for Children: A Scoping Review” published in the International Journal of Social Robotics (2020, paper here).


What is a social robot?

Social robots are small robotic devices that are capable of social interactions, such as cooperation, instruction and play. The robots can be shaped like animals (e.g., Aibo – the robotic dog (Fig. 1(a)) or characters (e.g. humanoid robot Nao (Fig. 1(b)). Among other functions, social robots can play a therapeutic role (1), serve as companions (2) and aid in education (3,4). One of the application areas of social robotics is therapy for children with autism spectrum disorder. In this domain, robotic companions have the potential to improve a variety of behavioural outcomes, including social and language skills (5). Social robots are also used with older populations. For example, robots like Paro (Fig. 1(c)) are being used in elder care settings. This baby harp seal lookalike helps reduce loneliness and agitation among residents (6).

Fig. 1 Commonly used social robots Aibo (a)(7), Nao (b)(8), Paro (c)(9).

A new mental health intervention for children

Since social robots seem to have a positive impact on mental health in different populations, there is a growing interest in using them as a tool to promote and improve mental health among children. As a result, a number of studies are being conducted to test social robots in this relatively new domain. In the Neuroscience Engagement and Smart Tech (NEST) Lab, we collected and analyzed the existing research studies which investigate the use of social robots to improve children’s mental health (10), to get a fuller view on what interventions are being tested and how.  

What we know: Feasibility and short-term effects

Using social robots to benefit children’s mental health is a new and rapidly developing field. Hence, the majority of currently available studies are intended as means of exploring what is possible and what could be effective in the future. The studies usually include a single session with the robot, which shows only short-term outcomes of the interaction. While the evidence does not allow for drawing strong and long-term conclusions, the studies in our sample demonstrate that various robotic interventions are feasible. We know that social robots can be introduced and deployed in therapy, clinical and other settings. But perhaps the most crucial aspect of determining whether robotic companions could be successful, is the fact that children participating in the studies usually showed a positive response to the robots and were engaged in the interaction, e.g., distraction during vaccination (11). This positive reception makes the developments in the use of social robots promising.

What we still need to learn: Effectiveness and social impact

To be able to draw conclusions about the effectiveness of robotic interventions we need more evidence. Future research in this field needs to systematically address well-focused questions around specific outcomes (e.g., stress reduction). Additionally, potential social impacts of the robots should be more carefully considered. Robots are intended to be introduced into different environments as social entities. For example, a robot present at a hospital to distract children during medical procedures will likely affect others around the child such as parents and nurses. Moving forward, we need to learn more not only about specific social robot interventions that can be helpful, but also about how introducing social robots into new environments will affect social dynamics.

What about ethics?

Conducting child-robot interaction research comes with unique ethical concerns. In our scoping review of the literature, we found that the majority of studies in the sample provide only generalized statements about the assent process used (10). Transparency about how the robot is introduced and described  to young participants is crucial, as children of different ages may have different beliefs about the animacy of robots. Other notable ethical considerations include attachment and deception. For example, children could experience distress when the robot is taken away or mistreated (12). The key to proactively addressing these ethical issues could be using participatory approaches throughout the research process. Working together with children and parents will help minimize the risk and maximize the benefit of future social robot mental health interventions.

Acknowledgements to the leaders of this work Dr. Julie Robillard and Dr. Tony Prescott.

References:

  1. Howard AM. Robots learn to play: robots emerging role in pediatric therapy. FLAIRS Conference. 2013 May; Available from: https://smartech.gatech.edu/handle/1853/49760.
  2. Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open. 2018 Feb 1;8(2):e018815.
  3. Looije R, Neerincx MA, Peters JK, Henkemans OAB. Integrating Robot Support Functions into Varied Activities at Returning Hospital Visits. Int J of Soc Robotics. 2016 Aug 1;8(4):483–97.
  4. Ros R, Oleari E, Pozzi C, Sacchitelli F, Baranzini D, Bagherzadhalimi A, et al. A Motivational Approach to Support Healthy Habits in Long-term Child–Robot Interaction. Int J of Soc Robotics. 2016 Nov 1;8(5):599–617.
  5. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, et al. Autism and social robotics: A systematic review. Autism Research. 2016;9(2):165–83.
  6. Pu L, Moyle W, Jones C, Todorovic M. The Effectiveness of Social Robots for Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Gerontologist. 2019;59(1):e37–51.
  7. Entertainment Robot “aibo” Announced. Sony Group Portal – Sony Global Headquarters. [cited 2021 Jun 29]. Available from: http://www.sony.com/en/SonyInfo/News/Press/201711/17-105E/index.html
  8. Nao – ROBOTS: Your Guide to the World of Robotics. [cited 2021 Jun 29]. Available from: https://robots.ieee.org/robots/nao//
  9. Purchasing PARO seal. [cited 2021 Jun 29]. Available from: https://www.paroseal.co.uk/purchase
  10. Kabacińska K, Prescott TJ, Robillard JM. Socially Assistive Robots as Mental Health Interventions for Children: A Scoping Review. Int J of Soc Robotics .2020 Jul 27;10.1007/s12369-020-00679-0.
  11. Beran TN, Ramirez-Serrano A, Vanderkooi OG, Kuhn S. Reducing children’s pain and distress towards flu vaccinations: A novel and effective application of humanoid robotics. Vaccine. 2013 Jun 7;31(25):2772–7.
  12. Kahn Jr. PH, Kanda T, Ishiguro H, Freier NG, Severson RL, Gill BT, et al. “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Developmental Psychology. 2012;48(2):303–14.