Incorporating Patient Voices into Patient Care

Infographic resources for pediatric Drug Resistant Epilepsy


Ask yourself, “would pamphlets or posters be a good means of sharing information for blinded patients?”. Hopefully your response falls somewhere along the spectrum of, “of course not” to “that’s not ideal”. And you’d be right; when creating a resource for a particular group, it’s essential that their needs be considered to ensure the information is shared in a meaningful and functional way. This is true in all domains, be it websites, videos, or printed resources. If the resource is inaccessible to the group you wish to share your research with, then its usefulness is limited to academic discussion and it will not be effective in the real world.

Despite efforts to elucidate guidelines on how to best engage with the public, research shows that many patient education resources aren’t very palatable to the average person. Issues with technical jargon, lack of visual aids, and incomplete information all contribute to the inaccessibility of an educational resource. These issues can be compounded when sharing findings on complex topics such as neurotechnological treatments for pediatric drug resistant epilepsy (DRE). Ultimately, when creating resources from one’s research, the main concern should be that it is readable, understandable, and useful to those who look to access those resources (1).

Figure 1. An Illustration of the communication gap between healthcare research and patients.

Readability

The reading age for a text is measured by its readability, which is a proxy score on how easily it can be read and processed by the reader. Readability commonly assesses the use of familiar words, density of syllables, and length of sentences to determine its score. The American Medical Association (AMA) suggests that all patient resources be written at or below 7th grade reading level, the average American reading level (2). However, studies on resources curated for ophthalmology, lung cancer, and dementia found that nearly all patient education materials produced exceeded these AMA recommendations, leading to materials that were beyond the general populations ability to interpret (3,4,5). In areas where patient’s may be suffering from cognitive deficits, such as epilepsy, clarity in written resources is paramount. Yet patient education websites for epilepsy surgery show no greater care for readability than other fields, with the majority written at an excessively difficult reading level (6). This pattern of low readability suggests that presently available patient resources are not accessible to the common patient, and may be contributing to lower levels of health literacy.

Understandability

While readability is an excellent way to assess whether your audience can read your resource, it doesn’t quite capture whether they can comprehend the information it is sharing. The Patient Education Materials Assessment Tool (PEMAT) developed by the Agency for Healthcare Research Quality measures understandability in terms of content, word choice and style, use of numbers, organization, layout and design, and use of visual aids (7). These metrics are useful for determining how well patients can process a resource’s information and identify the key messages. Applying these measures to current resources reveals how short of the mark they fall in communicating information to patients. In a review of diabetes education materials, only 16% met criteria for understandability (8). Neurosurgery resources were similarly rated with a notable lack of summaries, main messaging, and visual aids (9). This finding is corroborated by another study on epilepsy decision-making, which notes more than half of reviewed patient education materials lacked visual aids entirely (6).  Taken together, it’s clear that much improvement is needed to promote clearer communication of research findings to patients.

Usefulness

The final piece of the patient resource puzzle is ensuring the information a resource is sharing is useful to the reader.Meaning, can they apply they information they learned to benefit their healthcare journey? The idea of usefulness aligns well with the PEMAT measure of actionability: “consumers of diverse backgrounds and varying levels of health literacy can identify what they can do based on the information presented” (7). In practice, patient education resources fall short once again, with only 1 diabetes resource meeting criteria for actionability, and the majority of neurosurgery resources failing to identify next steps or tools to help patients take action (8,9). Usefulness is also limited by inclusion of all relevant information, and in cases where decision-making is needed it is important for patients to be aware of all relevant risks and benefits to make informed healthcare decisions. Yet, nearly half of reviewed resources for epilepsy surgery neglected to touch on risks and benefits, with some providing biased information in one way or the other (e.g. discussing risks or benefits but not both) (6). It is startling to see that the vast majority of carefully crafted patient resources are not proving to be useful to the patients they serve.

A Neuroethical approach to Patient Education Resources

So, how do we make patient resources that are more engaging for patients? An excellent case study in this area are the infographic resources curated alongside research on decision-making for pediatric drug resistant epilepsy.

The large NIH funded project “Informing Choice for Neurotechnological Innovation in Pediatric Epilepsy Surgery” has several arms of research consisting of clinical trials,media analysis, youth interviews, family interviews, caregiver interviews, and genetic testing interviews (10-15). Though the methods for each arm of research varied, the methodology for creating patient-centered infographics stayed consistent.

In neuroethics, the patient’s rights, privacy, and voice are held in high esteem, and the NIH in particular has stated that engagement with the public in research is key. Bidirectional dialogue is encouraged to ensure that patients can engage with the research, and researchers can stay abreast of public desires, concerns, and health literacy (16). This bidirectional dialogue was employed in the development of the infographics, seeking patient and caregiver input at various stages throughout the process to guarantee the patient voice was incorporated and to ensure the resulting infographics were readable, understandable, and useful.

Infographic development process

A value-guided iterative approach was used for the development of all the infographics. The key findings of the research were extracted and summarized, informative headers and take-home messages were drafted. A word document was created with the information in plain text within a table, to resemble the proposed infographic layout, and was then reviewed by caregivers and research collaborators to ensure accuracy and understandability. Once through this initial process, the infographic was prepared, refined by the researchers, and sent to caregivers for review via a short 15-minute survey. The survey gathered information about clarity of main points, conciseness, engagement, visual appeal, and usefulness.

The survey also gauged respondent’s prior knowledge, willingness to share the infographic, and preferred format to engage with the resource. With feedback in hand, the final version of the infographic was designed and uploaded to the study’s page with a QR code included in the design to allow for further feedback and refinement in the future. 

On the sample infographic included to the side you can see the clear title, summary, research design, and action item (highlighted in red).

Readability was ensured through simple language use informed by PEMAT measures and feedback from caregivers. Understandability was ameliorated through the use of clear design, layout, and imagery. Nesting topics underneath key themes to retain a sense of cohesion. Both risks and benefits were addressed to better inform the reader of all relevant information and the take home messages summarize the useful pieces of information the reader can take away to apply in their healthcare journey. 

What’s Next?

Now that we have a framework for how to create and improve patient education materials, future researchers will be able to follow in our footsteps and create patient resources that are accessible. Such accessibility in the form of readability, understandability, and usefulness are highly important, as many North Americans do not possess high levels of health literacy (17,18). Health literacy comprises all the necessary skills to access, process, and comprehend health information in order to make informed healthcare decisions (19). Researchers have amassed a wealth of data on health, healthcare, and treatment options that have the potential to greatly impact the lives of many suffering with health conditions. In order to unlock that potential, patient voices need to be acknowledged and incorporated when creating resources. In this way we can bridge a crucial gap between bench and bedside, creating a more equitable and accessible healthcare system for all.

All 6 infographics summarizing the research of the NIH study on decision-making in paediatric DRE can be viewed and downloaded in English, Spanish or French here.


Ashley Lawson, BScH, is the Knowledge Translation and Communications Specialist for Neuroethics Canada as well as the Canadian Brain Research Strategy. She holds a Bachelor of Science in Psychology with a minor in Biology from Queen’s University.


References:

  1. Beaunoyer E, Arsenault M, Lomanowska AM, Guitton MJ. Understanding online health information: Evaluation, tools, and strategies. Patient education and counseling. 2017 Feb 1;100(2):183-9.
  2. Weiss BD. Health literacy and patient safety: Help patients understand. Manual for clinicians. American Medical Association Foundation; 2007.
  3. Patel PA, Gopali R, Reddy A, Patel KK. The Readability of Ophthalmological Patient Education Materials Provided by Major Academic Hospitals. InSeminars in Ophthalmology 2021 Apr 15 (pp. 1-6). Taylor & Francis.
  4. Hansberry DR, White MD, D’Angelo M, Prabhu AV, Kamel S, Lakhani P, Sundaram B. Lung cancer screening guidelines: how readable are internet-based patient education resources?. American Journal of Roentgenology. 2018 Jul;211(1):W42-6.
  5. O’Callaghan C, Rogan P, Brigo F, Rahilly J, Kinney M. Readability of online sources of information regarding epilepsy surgery and its impact on decision-making processes. Epilepsy & Behavior. 2021 Aug 1;121:108033.
  6. J.M. Robillard, A.B. Sporn (2018). Static versus interactive online resources about dementia: A comparison of readability scores. Gerontechnology, 17(1), 29-37.
  7. Shoemaker SJ, Wolf MS, Brach C. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient education and counseling. 2014 Sep 1;96(3):395-403.
  8. Lipari M, Berlie H, Saleh Y, Hang P, Moser L. Understandability, actionability, and readability of online patient education materials about diabetes mellitus. American Journal of Health-System Pharmacy. 2019 Feb 1;76(3):182-6.
  9. Ramos CL, Williams JE, Bababekov YJ, Chang DC, Carter BS, Jones PS. Assessing the understandability and actionability of online neurosurgical patient education materials. World neurosurgery. 2019 Oct 1;130:e588-97.
  10. Kaal KJ, Aguiar M, Harrison M, McDonald PJ, Illes J. The clinical research landscape of pediatric drug-resistant epilepsy. Journal of child neurology. 2020 Oct;35(11):763-6.
  11. Munjal V, Arakelyan M, McDonald PJ, Illes J. Epilepsy through the eyes of the media: A paradox of positive reporting and challenges of access to advanced neurotechnology. Epilepsy & Behavior. 2020 Oct 1;111:107200.
  12. Udwadia FR, McDonald PJ, Connolly MB, Hrincu V, Illes J. Youth weigh in: views on advanced neurotechnology for drug-resistant epilepsy. Journal of child neurology. 2021 Feb;36(2):128-32.
  13. McDonald PJ, Hrincu V, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Udwadia F, Illes J. Novel neurotechnological interventions for pediatric drug-resistant epilepsy: physician perspectives. Journal of child neurology. 2021 Mar;36(3):222-9
  14. Hrincu V, McDonald PJ, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, Chiong W, Alam A, Ribary U, Illes J. Choice and Trade-offs: Parent Decision Making for Neurotechnologies for Pediatric Drug-Resistant Epilepsy. Journal of Child Neurology. 2021 Jun 2:08830738211015010.
  15. Alam, A. Parfvonov, M., Hrincu, V., Lawson, A., Huang, M., Gill, I., Connolly, M., & Illes, J. Genetic testing impacts on decision-making in pediatric drug resistant epilepsy. 2021 (in preparation).
  16. Greely HT, Grady C, Ramos KM, Chiong W, Eberwine J, Farahany NA, Johnson LS, Hyman BT, Hyman SE, Rommelfanger KS, Serrano EE. Neuroethics guiding principles for the NIH BRAIN initiative. Journal of Neuroscience. 2018 Dec 12;38(50):10586-8.
  17. Canadian Council on Learning. Health literacy in Canada: a healthy understanding [internet], Ottawa: Canadian Council on Learning; 2008. Available from: http://www.en.copian.ca/library/research/ccl/health/health.pdf
  18. Davis TC, Williams MV, Marin E, Parker RM, Glass J. Health literacy and cancer communication. CA: a cancer journal for clinicians. 2002 May;52(3):134-49.
  19. Kindig DA, Panzer AM, Nielsen-Bohlman L. Health literacy: a prescription to end confusion. 1st ed. Washington D.C.: National Academies Press; 2004.


Novel Epilepsy Treatments: Factors That Matter the Most to Parents and Doctors

This blog post discusses some of the key findings from a poster presentation for the 2021 annual meeting of the American Academy of Neurology (abstract here) and published in the Journal of Child Neurology (2021, paper here).

Neurotechnologies that can change certain functions of the brain may help children with a type of epilepsy that responds poorly to anti-seizure medication (drug-resistant epilepsy). However, there are important differences in the way that parents and doctors make treatment decisions about them.

For parents and caregivers of children with drug-resistant epilepsy (1), treatment choice goes beyond just the direct effect of the treatment on the child’s seizures. They also consider their child in context of the world and their overall quality of life (2). For doctors, treatment choice focuses on the evidence of effectiveness and the seizures themselves (3,4). Understanding both the shared and different decision-making priorities for these groups requires deeper insight into the values that drive them.

The promise and uncertainty of neurotechnologies

Neurotechnologies use innovative techniques to alter brain activity in two main ways: electrical stimulation (i.e., neuromodulation) or the removal of diseased tissue. Modern examples include responsive neurostimulation and laser interstitial thermal therapy. These treatments are gaining in popularity because of their perceived benefits, such as reversibility and limited invasiveness.

Given the special developmental needs of children, we wanted to better understand the trade-offs of benefit and risk. We talked to parents and doctors caring for children with drug-resistant epilepsy across Canada and the USA. We asked them to identify the most important factors they consider when weighing novel neurotechnologies against traditional neurosurgery.

For parents, quality of life is key

When asked about new forms of neurotechnology to treat their child’s epilepsy, parents highlight the benefits including – but also beyond – seizures. Specifically, parents identify quality of life as a crucial factor. This includes life factors such as independence and freedom from the side effects of medication.

“Can they [our child] hold down a job? Can they have a house? Can they get married and have a life? To me, that was important,” said one parent.

Doctors mainly discuss seizure freedom as a measure of success. As one doctor stated, it’s important to consider multiple factors, including quality of life, but that “the big [measure] is seizure control, decreased seizure frequency, and then seizure freedom.”

Not all information is equal

For doctors, scientific evidence is the main factor in considering a new procedure, and to prioritize safety and trust. Introducing novel treatments is therefore challenging (5), because they lack clear evidence while they are being studied, especially in children.

Parents struggle to meet all kinds of information needs. They describe spending hours learning online from a range of sources–from academic articles to blog posts. The credibility and readability of these online resources varies greatly, and they report that reliable sources of information are sometimes difficult to identify.

One parent commented, “[Once the information is] on the internet …we have to decipher whether it’s real.”

Many parents suggest that it would be helpful to receive objective materials directly from hospitals or epilepsy centers.

Preserving trust for novel treatment decisions

Novel treatments disrupt conventional decision-making paradigms. Understanding the different ways medical professionals and parents approach treatment decisions can ease the experience of choosing treatment.

Parents maintain a high degree of trust in their doctors and medical team. Incorporating the different perspectives of families, young patients, and physicians preserves trust and supports inclusive clinical practice.

See the poster above for an overview of the results.

For an overview of neurotechnologies in pediatric epilepsy, see this blog post.
For the views of youth on neurotechnology, see Udwadia et al.’s paper.

Acknowledgements to the leaders of this work Dr. Judy Illes (PI) and Dr. Patrick McDonald (Co-PI). I thank our collaborators Dr. Mary B. Connolly, Dr. Mark Harrison, Dr. George M. Ibrahim, Dr. Robert Naftel, and Dr. Winston Chiong, Dr. Urs Ribary and other members of the Neuroethics Canada team. This work is supported by: the National Institutes of Health grant (JI) 1RF1 # MH117805, Canada Research Chairs Program (JI), and the UBC Alcan Chair in Neurosciences (PJM).

References

  1. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069–77.
  2. Hrincu V, McDonald PJ, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, et al. Choice and Trade-offs: Parent Decision Making for Neurotechnologies for Pediatric Drug-Resistant Epilepsy. J Child Neurol. 2021 Jun 2;08830738211015010.
  3. McDonald PJ, Hrincu V, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, et al. Novel Neurotechnological Interventions for Pediatric Drug-Resistant Epilepsy: Physician Perspectives. J Child Neurol. 2020 Oct 28;0883073820966935.
  4. Kaal KJ, Aguiar M, Harrison M, McDonald PJ, Illes J. The Clinical Research Landscape of Pediatric Drug-Resistant Epilepsy. J Child Neurol. 2020 Jun 16;0883073820931255.
  5. Iserson KV, Chiasson PM. The Ethics of Applying New Medical Technologies. Semin Laparosc Surg. 2002 Dec 1;9(4):222–9.

Viorica Hrincu, MSc is doing her PhD in Experimental Medicine at the University of British Columbia in the Neuroscience Engagement and Smart Tech (NEST) lab.

When is it rational to be nudged?

Five years ago, Richard Thaler and Cass Sunstein published a thoughtful little book called Nudge in which they outlined a broad program for improving the outcomes of human decisions. Drawing on the maturity of the field of behavioural economics, Thaler and Sunstein outlined the myriad ways in which small changes in the environment can affect the choices we make. In the intervening years, interest on the part of governments in developing such programs has grown ever stronger. In Great Britain, the Conservative government of David Cameron established the Behavioural Insights Team in 2010, with Richard Thaler as advisor. Cass Sunstein was appointed Administrator of the White House Office of Information and Regulatory Affairs under Barack Obama, where, among other tasks, he developed government-wide regulations that nudge people in numerous ways, although exactly what was done has always been a bit under the radar. Now comes news that the US government is developing its own Behavioral Insights Team, and there is a call  for people with appropriate skills to join.

Nudging is not without its critics. Those with libertarian sensibilities are predictably outraged, even if Thaler and Sunstein described the program as an exercise in libertarian paternalism.The primary concern is that nudging infringes upon autonomy, which brings it directly into the sight lines of neuroethics. The key issues were recently summarized in a short article in The New Scientist by Evan Selinger.

Fair minded individuals may debate the degree to which the infringement upon autonomy engendered by nudges is problematic, but Gidon Felsen, Noah Castelo and I decided to take a different tack.  First of all, we reframed the issue, calling it Decisional Enhancement rather than nudging (that our reframe is, in and of itself, a bit of a nudge did not escape our notice). More importantly, we have begun to explore the question of how the public view the infringement of autonomy that decisional enhancement programs provide. Essentially, we wanted to explore the degree to which people are willing to trade autonomy for better outcomes. The results of our adventures in experimental neuroethics can be viewed in our recently published paper in Judgement and Decision Making.  One key insight is this: when people need help achieving their objectives in life, they are not loathe to give up a bit of autonomy. It does not appear to be the case that people are enthusiastic about giving up autonomy just because their objectives are aligned with the decisional enhancement program. Rather, it is when their objectives align with the program and they recognize that they are struggling with achieving that objective that the endorsement is most evident.  To put it into terms developed by Harry Frankfurt, it seems that autonomy violations are most acceptable when people recognize that their decisions are more likely to follow their lusty first-order desires – to overeat, to spend money foolishly, etc. – than their sober life objectives, what Frankfurt called second-order desires.  Viewed in this light, perhaps it is entirely rational to give up a bit of autonomy to live as we wish.

The true self? It’s all in your head.

Josh Knobe has an op-ed piece in The New York Times today about the nature of the true self. In the article, he raises the question of whether the true self is reflected in decisions that are made upon rational reflection or those that are made based upon following one’s natural urges. Philosophers, Knobe argues, tend to favour rational reflection, while non-philosophers endorse following those natural urges wherever they lead. Actually, both are probably right.

The problem I believe comes from the question itself – what is the true self? As with many concepts that we humans have developed in the course of trying to make sense of the world, we fall into the trap of thinking that there is one thing that represents the true self. Not so, say the neuroessentialists (me, for instance) who argue that the self is the sum total of the activity of all of the constituent elements of the brain. If one accepts this premise, then both natural urges and rational reflection represent the true self. That they may sometimes be in conflict highlights the cognitive dissonance that the addict feels when, via rational reflection they want to quit smoking and yet, following their ‘natural’ urges, succumb to lighting another cigarette. Such cognitive dissonance is a common feature of everyday life. Continue reading